
Trial Lecture:

Information Flow Properties for Security Policies on Data Usage

Andre Büttner

2nd September 2024

2

Example Scenario*

Join group Magicians…

…but don‘t show my

groups to my co-workers!

I can‘t see

John‘s group

memberships.

Social Media

Why do I suddenly

get advertisement for

magic wands?

Employee

‘John’

Co-workers of

John

*Inspired by Kozyri et al. (2022)

3

Motivation

• Systems need to ensure safety of their users and their data

• Regulations like GDPR enforce measures to protect user data

• Complexity of systems makes verification of and adhering to security policies difficult

• Tracing information flow to detect policy violations

Most work in computer security has

ignored the social contexts in

which systems are actually used.

- Goguen and Meseguer (1982)

4

What is information?

• Directly shared data

• Metadata (sender, receiver, time, …)

• Network traffic

• System behavior

• And more…

5

Security Policies

Security policies define the security requirements for a given system (Goguen and

Meseguer, 1982)

Security policies on data usage:

• Confidentiality → data must not be accessed by unauthorized users

• Integrity → data must not be modified by unauthorized users

• Availability → data must come from available sources

Allowed and forbidden information flow

• Low input can flow to low and high output

• High input can flow to high output, but NOT to low output

Low

High

Low

High

Inputs Outputs

AVAILABILITY

6

Trace Properties (1)

A trace property is…

• … the intersection of a safety property and a liveness property. (Alpern and Schneider, 1985)

• Safety property → “bad things” do not happen

• Liveness property → “a good thing” happens

• … a predicate on a single system execution. (Kozyri et al., 2022)

7

Trace Properties (2)

Can be implemented through, e.g.:

• Access Control:

• E.g. Bell–La Padula model (Bell and La Padula, 1973)

• Low subject must not read from higher objects

• High subject must not write to lower objects

• Encryption:

• Hiding information from users without decryption key

8

Hyperproperties

• Trace properties cannot cover complex security policies

• System properties are derived from multiple traces

• Hyperproperties define properties on sets of traces (Clarkson and Schneider, 2010)

• Also cover trace properties

 ➔ Information Flow Properties

9

Information Flow Properties (1)

An information flow property is a mathematical specification of how information is allowed to flow between

entities making up a system, such as programs, users, inputs, outputs, and storage locations. (Kozyri et al., 2022)

Can be specified for any abstraction level of a system:

• Hardware

• Operating system

• Programming Language

• Distributed systems

• Cyber-physical systems

10

Information Flow Properties (2)

Explicit flow

• Direct transfer of information

• Assignments or deducing new values

Implicit flow

• Indirect transfer of information

• E.g. through conditional statements

if a < 1 then {
 b := 0
} else {
 b := 1
}

b := a
a

b

a

b

a

b

a

b

11

Information Flow Properties (3)

Properties

• Strong dependency (Cohen, 1976)

Given a system with input and output labels α and β.

β depends strongly on α if β varies for two execution traces where only α differs.

• Noninterference (Goguen and Meseguer, 1982)

• Prohibit information flow between certain entities

• Relational noninterference (Kozyri et al., 2022):

• Formalizes the relation between input and output labels

• E.g., John’s co-workers cannot find out about his group memberships (secret output),

but see his connections (public output)

• Limitations :

• Only for deterministic programs

• Does not consider timing or termination

12

Information Flow Properties (4)

Other properties

• Nondeducibility (Sutherland, 1986)

• No flow from high to low entities

• Also no flow from low to high entities → symmetry (McLean, 1990)

→ too strict?

• Relevant for properties, such as anonymity and unlinkability (Hughes and Shmatikov, 2004)

• Noninference (O’Halloran, 1990)

• Removing high inputs and outputs results in valid traces

• May be too strict → Generalized Noninference

13

Modelling Information Flow Properties (1)

Labels

• Assigning labels to entities, input data, output data, functions, etc.

• Granularity

• Low-level: higher control, fine-grained, more complex

• High-level: less control, more comprehensible

• Static binding:

• Labelling of data containers

• Can be done in advance, e.g., by the compiler

• Dynamic binding:

• Labelling data values

• Assignment of labels during runtime → Who assigns labels?

14

Modelling Information Flow Properties (2)

Flow relations

• Defining allowed data flow: 𝐴 ⊇ 𝐵

• Axioms (Denning, 1976)

Reflexive: 𝐴 ⊇ 𝐴

Transitive (Preorder): 𝐴 ⊇ 𝐵, 𝐵 ⊇ 𝐶 ⇒ 𝐴 ⊇ 𝐶

Antisymmetric (Partial Order): 𝐴 ⊇ 𝐵, 𝐵 ⊇ 𝐴 ⇒ 𝐴 = 𝐵

15

Modelling Information Flow Properties (3)

• Joining labels

• Example: C:=A+B

➔ What security class does C belong to?

• Linear ordering:

• E.g., military system with hierarchical clearance levels

• Nonlinear ordering

• E.g., system that contains medical, financial, and criminal

records on individuals

𝑆𝐶 = 𝐴1, … , 𝐴𝑛

𝐴𝑖 → 𝐴𝑗 𝑖𝑓𝑓 𝑖 ≤ 𝑗

𝐴𝑖 ⊕ 𝐴𝑗 ≡ 𝐴𝑚𝑎𝑥 𝑖, 𝑗

𝐴𝑖 ⊗ 𝐴𝑗 ≡ 𝐴𝑚𝑖𝑛 𝑖, 𝑗

𝐿 = 𝐴1; 𝐻 = 𝐴𝑛

𝑆𝐶 = 𝑝𝑜𝑤𝑒𝑟𝑠𝑒𝑡 𝑋

𝐴 → 𝐵 𝑖𝑓𝑓 𝐴 ⊆ 𝐵

𝐴 ⊕ 𝐵 ≡ 𝐴 ∪ 𝐵

𝐴 ⊗ 𝐵 ≡ 𝐴 ∩ 𝐵

𝐿 = ∅; 𝐻 = 𝑋

{𝑥, 𝑦, 𝑧}

{𝑥, 𝑦} {𝑦, 𝑧}{𝑥, 𝑧}

{𝑥} {𝑦} {𝑧}

{∅}

𝐴𝑛

↑
𝐴𝑛−1

↑
…
↑

𝐴2

↑
𝐴1

Nonlinear lattice (from Denning, 1976)

Linear ordered lattice (from Denning, 1976)

16

Determinism vs. Nondeterminism (1)

Deterministic system

• Same input always yields the same output values

Nondeterministic system

• Same input yields varying output values

• Set of output values can differ

• Distribution of output values can differ

• Occurs especially in connection with concurrency

if h < 1 then {
 l := 0 || l := 1
} else {
 l := 0 || l := 2
}

if h < 1 then {
 l := 0
} else {
 l := 2
}

if h < 1 then {
 l := 0 || l := 1 || l := 1
} else {
 l := 0 || l := 0 || l := 1
}

Deterministic code:

Nondeterministic code with different output set:

Nondeterministic code with different output distribution:

17

Determinism vs. Nondeterminism (2)

Nondeterministic information flow properties

• Observational determinism

• Completely prohibits nondeterminism

• Possibilistic approach

• Consider the set of possible outputs

• Generalized noninterference (GNI) (McCullough, 1988)

• Probabilistic approach

• Consider the probability

• Probabilistic noninterference (Volpano and Smith, 1999)

Allows public

nondeterminism

Defends against

refinement
(see slide 20)

Defends against

leaky output

distributions

Observational

determinism   

Possibilistic   

Probabilistic  ? 

Comparison of nondeterministic approaches (from Kozyri et al., 2022)

18

Attacks (1)

Covert channel attacks

• Leakage through illegitimate information channels

• Passive and active adversaries

• Examples: heat emission, program termination, time

Termination attack

• Confidential input may change termination behavior of a program

• Addressed by termination-sensitive noninterference (Volpano and Smith,

1997)

if h < 1 then {
 while true do skip
} else {
 l := 1
}

Varying termination behavior

19

Attacks (2)

Timing attacks

• Confidential input may change execution time of a program

• E.g., attacks against cryptographic algorithms

• Addressed by time-sensitive noninterference

if h < 1 then {
 do(…)
 l := 1
} else {
 l := 1
}

Varying execution time

20

Attacks (3)

Refinement attack

• Exploiting nondeterministic systems

• Manipulating system behavior to increase the likelihood for information leaks

• Example (from Clarkson and Schneider, 2010)

➔ Refinement: system that only outputs secret

secret ∈ {0,1}

out:=0 || out:=1 || out:=secret

21

Reclassification (1)

Objective

• Finer grained labels

• Changing the class of information from high to low or vice versa

• Practical examples:

• Password checking

• Publishing voting results

• Encryption → confidentiality upgrade

• Digital signature → integrity upgrade

22

Reclassification (2)

Types of reclassification (Confidentiality)

• Declassification

• Escape hatch expressions → declassify(x)

• E.g.: aggregated or anonymized data

• Erasure

• Removing label for data to exclude class

• E.g.: when the consent to information usage was withdrawn

23

Reclassification (3)

Types of reclassification (Integrity)

• Endorsement

• Information becomes more trusted

• E.g.: input sanitizing, or verifying entity

• Deprecation

• Information becomes less trusted

• E.g.: after a certain time period, or if processed by an untrusted entity

24

Reclassification (4)

Dimensions of declassification (Sabelfeld and Sands, 2009)

• What information can be released

• Partial release / quantity → e.g. credit card number

• Who can release information

• Related to integrity class of entities

• Where is information released

• Level locality policies

• Code locality policies

• When is information released

• Time-complexity based: after a certain time

• Probabilistic: likelihood of a leak

• Relative: dependent on other events

25

Information Flow Control (1)

Information Flow Control ➔ Methods to enforce information flow properties

Static analysis

• Checking system behavior before execution

• Minimized runtime overhead

• Example approaches:

• Static taint analysis

• Security-typed languages, e.g. JFlow (Myers, 1999)

26

Information Flow Control (2)

Dynamic analysis

• Checking system behavior during execution

• Affects runtime performance

• May not detect implicit information flow (Myers and Liskov, 1997)

• Example approaches:

• Dynamic taint analysis

• Permissive-Upgrade (Austin and Flanagan, 2010)

27

Lecture Takeaways

• What are information flow properties?

• How to model them?

• What is noninterference?

• How can information flow be attacked?

• Why and how do we need reclassification?

• What are the differences between static and dynamic analysis?

28

Key Literature

• E. Kozyri, S. Chong, and A. C. Myers, ‘Expressing Information Flow Properties’, FNT in Privacy and Security, vol. 3, no. 1, pp. 1–102, 2022,

doi: 10.1561/3300000008.

• D. E. Denning, ‘A lattice model of secure information flow’, Communications of the ACM, vol. 19, no. 5, pp. 236–243, May 1976,

doi: 10.1145/360051.360056.

• J. A. Goguen and J. Meseguer, ‘Security Policies and Security Models’, in 1982 IEEE Symposium on Security and Privacy, Apr. 1982, pp.

11–11. doi: 10.1109/SP.1982.10014.

• R. Focardi and R. Gorrieri, ‘Classification of Security Properties’, in Foundations of Security Analysis and Design, R. Focardi and R.

Gorrieri, Eds., Berlin, Heidelberg: Springer, 2001, pp. 331–396. doi: 10.1007/3-540-45608-2_6.

https://doi.org/10.1561/3300000008
https://doi.org/10.1145/360051.360056
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/3-540-45608-2_6

29

Further Literature

• Alpern and F. B. Schneider, ‘Defining liveness’, Information Processing Letters, vol. 21, no. 4, pp. 181–185, Oct. 1985, doi: 10.1016/0020-

0190(85)90056-0.

• D. E. Bell and L. J. LaPadula, ‘Secure computer systems: Mathematical foundations’, Citeseer, 1973. Available:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a07edec9f865767be124e893c7a5a9547c8bf79e

• M. R. Clarkson and F. B. Schneider, ‘Hyperproperties’, Journal of Computer Security, vol. 18, no. 6, pp. 1157–1210, 2010.

• E. S. Cohen, ‘Strong Dependency: A Formalism for Describing Information Transmission in Computational Systems’, Dept. of

Computer Science. Carnegie Mellon U., Pittsburg, Pa, 1976

• D. Sutherland, ‘A model of information’, in Proceedings of the 9th national computer security conference, Washington, DC, 1986, pp. 175–

183. Available: https://apps.dtic.mil/sti/tr/pdf/ADA221717.pdf#page=180

• C. O’Halloran, ‘A calculus of information flow’, in Proceedings of the European Symposium on Research in Computer Security, 1990.

Available: https://cir.nii.ac.jp/crid/1572824500057034240

• D. McCullough, ‘Noninterference and the composability of security properties’, in Proceedings. 1988 IEEE Symposium on Security and

Privacy, IEEE Computer Society, 1988, pp. 177–177. Available: https://www.computer.org/csdl/proceedings-

article/sp/1988/08500177/12OmNzb7Ztw

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a07edec9f865767be124e893c7a5a9547c8bf79e
https://apps.dtic.mil/sti/tr/pdf/ADA221717.pdf#page=180
https://cir.nii.ac.jp/crid/1572824500057034240
https://www.computer.org/csdl/proceedings-article/sp/1988/08500177/12OmNzb7Ztw
https://www.computer.org/csdl/proceedings-article/sp/1988/08500177/12OmNzb7Ztw
https://www.computer.org/csdl/proceedings-article/sp/1988/08500177/12OmNzb7Ztw

30

Further Literature

• D. Volpano and G. Smith, ‘Eliminating covert flows with minimum typings’, in Proceedings 10th Computer Security Foundations

Workshop, Jun. 1997, pp. 156–168. doi: 10.1109/CSFW.1997.596807.

• D. Volpano and G. Smith, ‘Probabilistic noninterference in a concurrent language’, Journal of Computer Security, vol. 7, no. 2–3, pp. 231–

253, 1999. doi: 10.3233/JCS-1999-72-305.

• A. Sabelfeld and D. Sands, ‘Declassification: Dimensions and principles’, JCS, vol. 17, no. 5, pp. 517–548, Oct. 2009, doi: 10.3233/JCS-

2009-0352.

• A. C. Myers and B. Liskov, ‘A decentralized model for information flow control’, SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 129–142,

Dec. 1997, doi: 10.1145/269005.266669.

• A. C. Myers, ‘JFlow: practical mostly-static information flow control’, in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, San Antonio Texas USA: ACM, Jan. 1999, pp. 228–241. doi: 10.1145/292540.292561.

• T. H. Austin and C. Flanagan, ‘Permissive dynamic information flow analysis’, in Proceedings of the 5th ACM SIGPLAN Workshop on

Programming Languages and Analysis for Security, Toronto Canada: ACM, Jun. 2010, pp. 1–12. doi: 10.1145/1814217.1814220.

https://doi.org/10.1109/CSFW.1997.596807
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-1999-72-305
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1145/269005.266669
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/1814217.1814220

	Default Section
	Slide 1: Trial Lecture: Information Flow Properties for Security Policies on Data Usage
	Slide 2: Example Scenario*
	Slide 3: Motivation
	Slide 4: What is information?
	Slide 5: Security Policies
	Slide 6: Trace Properties (1)
	Slide 7: Trace Properties (2)
	Slide 8: Hyperproperties
	Slide 9: Information Flow Properties (1)
	Slide 10: Information Flow Properties (2)
	Slide 11: Information Flow Properties (3)
	Slide 12: Information Flow Properties (4)
	Slide 13: Modelling Information Flow Properties (1)
	Slide 14: Modelling Information Flow Properties (2)
	Slide 15: Modelling Information Flow Properties (3)
	Slide 16: Determinism vs. Nondeterminism (1)
	Slide 17: Determinism vs. Nondeterminism (2)
	Slide 18: Attacks (1)
	Slide 19: Attacks (2)
	Slide 20: Attacks (3)
	Slide 21: Reclassification (1)
	Slide 22: Reclassification (2)
	Slide 23: Reclassification (3)
	Slide 24: Reclassification (4)
	Slide 25: Information Flow Control (1)
	Slide 26: Information Flow Control (2)

	Conclusion
	Slide 27: Lecture Takeaways
	Slide 28: Key Literature
	Slide 29: Further Literature
	Slide 30: Further Literature

