

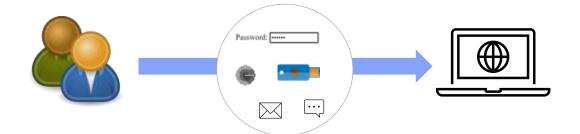
Evaluating the Influence of Multi-Factor Authentication and Recovery Settings on the Security and Accessibility of User Accounts

Andre Büttner and Nils Gruschka

University of Oslo (Norway) 27th February 2024

Motivation

Source: https://cybernews.com/security/billions-passwords-credentials-leaked-mother-of-all-breaches/


Source: https://www.nytimes.com/2024/01/19/technology/microsoft-executive-emails-hacked.html

Source: https://www.bbc.com/news/uk-england-london-66442069

Motivation

- Online services offer different authentication methods
 - Password
 - Multi-Factor Authentication (MFA)
 - SMS
 - Authenticator app
 - Security key
 - Account recovery methods
 - Email
 - SMS

- Well-known problems with passwords: phishing, credential stuffing, dictionary attacks, etc. [1]
- Problems with MFA and Recovery: usability^[2], authentication bypass / account lockout^[3]

^[3] Amft, Sabrina, et al. "We've Disabled MFA for You": An Evaluation of the Security and Usability of Multi-Factor Authentication Recovery Deployments." Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. 2023.

^[1] Taneski, Viktor, Marjan Heričko, and Boštjan Brumen. "Systematic overview of password security problems." Acta Polytechnica Hungarica 16.3 (2019): 143-165. 2019.

^[2] Das, Sanchari, Bingxing Wang, and L. Jean Camp. "MFA is a Waste of Time! Understanding Negative Connotation Towards MFA Applications via User Generated Content." arXiv e-prints (2019): arXiv-1908. 2019.

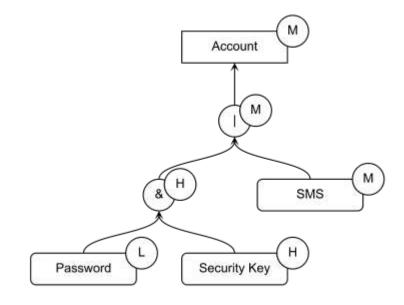
Problem Statement

→ Analysis of **security** and **accessibility** for Apple and Google user accounts

With respect to Apple and Google users...

- RQ1 How do the users access their passwords?
- RQ2 Which MFA and recovery methods did the users enable?
- RQ3 How secure are the account setups?
- RQ4 How many access methods do the user accounts depend on?

Account Access Graphs I


Account access graphs (AAGs)^[4,5] can be used to model authentication methods and account interdependencies.

Security scores

- Security of authentication methods
- Evaluation:
 - Scores (adopted from NIST^[6] / eIDAS^[7])

Score	Category	Authentication methods (examples)
High	Hardware-based	Security key, smart card
Medium	Software-based	SMS Code, OTP Apps
Low	Knowledge-based	Password, PIN

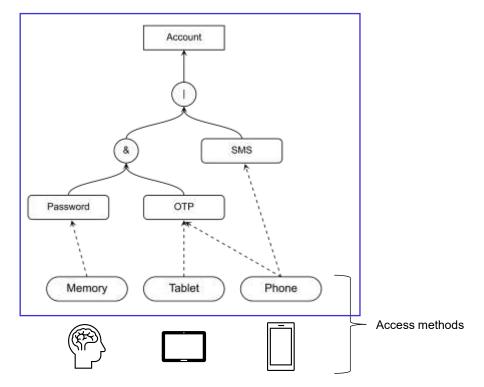
- & = maximum of child node scores
- | = minimum of child node scores

^[7] European Comission. "elDAS Levels of Assurance". https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/elDAS+Levels+of+Assurance. 2023.

^[4] Hammann, Sven, et al. "User account access graphs." Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019.

^[5] Pöhn, Daniela, et al. "A framework for analyzing authentication risks in account networks." Computers & Security 135 (2023): 103515. 2023.

^[6] Grassi, et al. "Digital Identity Guidelines: Authentication and Lifecycle Management". https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf. 2020.


Account Access Graphs II

Accessibility scores

- Lower bound number of access methods required to access the account
- Evaluation:
 - Derive boolean term and simplify
 - Scores $s_i = \frac{1}{n_i}$ ($n_i = \text{number of occurrences}$)
 - & = minimum
 - |= sum
- Example:

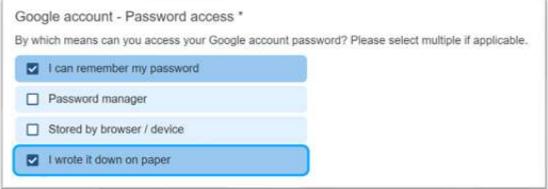
(Memory
$$\land$$
 (Tablet \lor Phone)) \lor Phone (Memory \land Tablet) \lor (Memory \land Phone) \lor Phone (Memory \land Tablet) \lor Phone

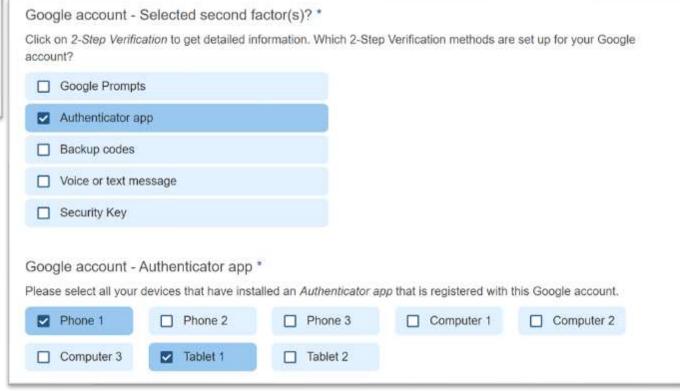
$$s_{acc} = \min(1,1) + 1 = 2$$

Online Survey

- Study participants acquired through Prolific*
- Questionnaire tasks:
 - 1. Create an enumerated list of devices

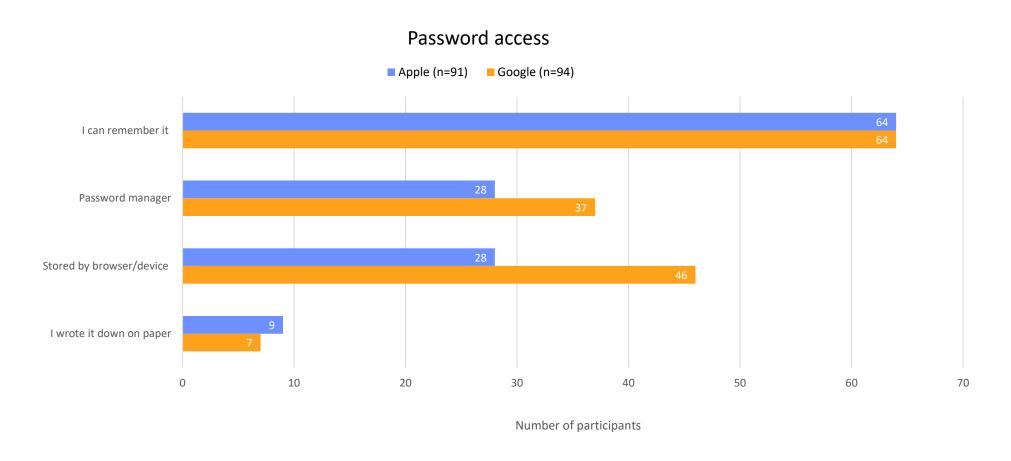
```
Phone 1: iPhone
...
Tablet 1: Samsung Tab
...
Computer 1: Private Computer
Computer 2: Work Laptop
...
Security Key 1: YubiKey
...
Smart Watch 1: Apple Watch
...
```


2. Questions on Apple / Google account configurations and access methods


Category		Apple	Google
Gender	male	45	48
	female	46	46
Age range	11-20	5	3
	21-30	44	37
	31-40	23	30
	41-50	13	14
	51-60	5	9
	61-70	2	1
Country of residence	USA	44	47
	Germany	47	47
Total		91	94

Demographics of survey participants

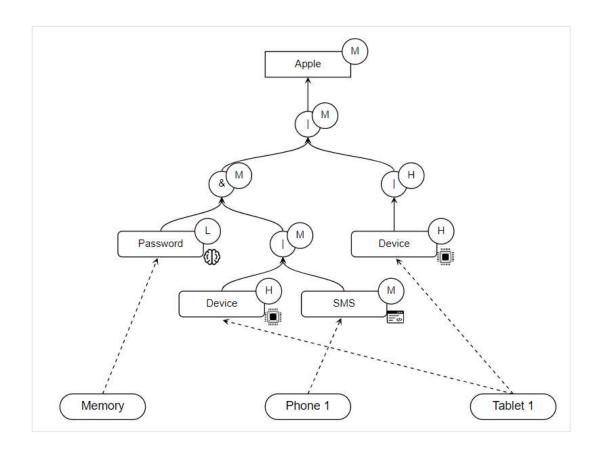
^{*} https://prolific.com (last accessed 2024-02-08)


Survey Question Examples

Results I

RQ1 How do the users access their passwords?

Results II


RQ2 Which MFA and recovery methods did the users enable?

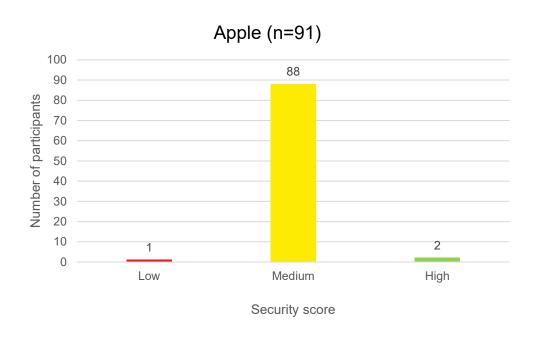
- Apple
 - Linking to devices: ~96%
 → used for both MFA and recovery unless explicitly disabled
 - Text message enabled: ~97%
 - Recovery key enabled: ~19%
- Google:
 - 68% of the Google accounts had at least one MFA method enabled
 - Previous findings:
 - In 2015, less than 7% of Google users had MFA enabled^[8]
 - In 2018, around 10% of Gmail accounts set up MFA^[9]
 - Auto enrolment of MFA in Google accounts since 2021^[10]

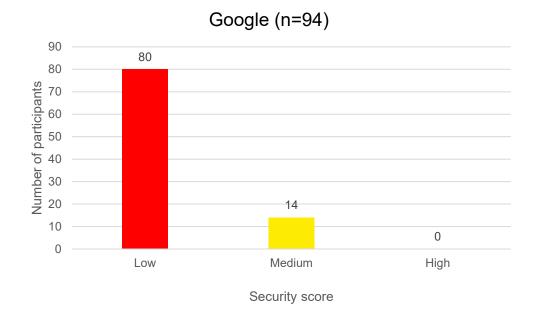
^[8] Petsas, Thanasis, et al. "Two-factor authentication: is the world ready? Quantifying 2FA adoption." *Proceedings of the eighth European workshop on system security.* 2015. [9] Milka, Grzergor. "Anatomy of account takeover." *Enigma 2018* (Enigma 2018).

^[10] Risher, M. "A simpler and safer future - without passwords". https://blog.google/technology/safety-security/a-simpler-and-saferfuture-without-passwords/. 2021.

AAG Example

Apple P2

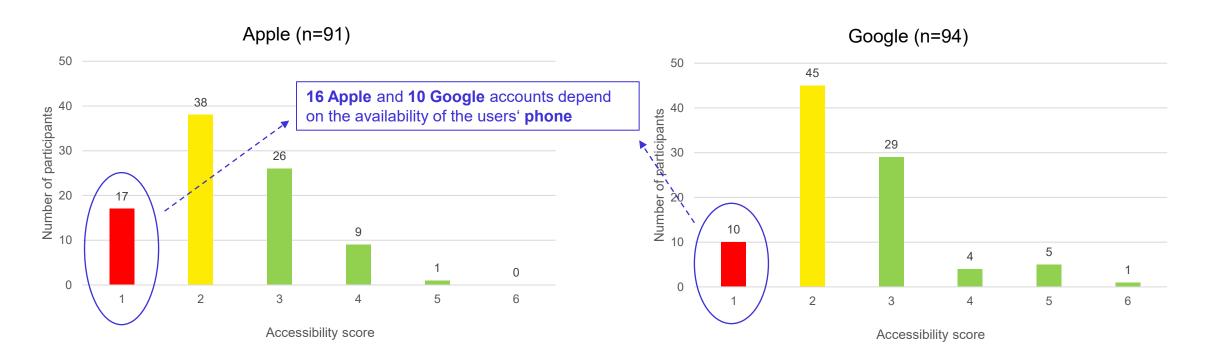

• Security score: Medium


• Accessibility score: 2

Results III

RQ3 How secure are the account setups?

Security scores



Results IV

RQ4 How many access methods do the user accounts depend on?

Accessibility scores

Conclusion

Summary:

- Majority of Apple accounts had a higher security score compared to Google accounts
- Several Apple and Google test participants could lose account access when only losing their phone
- Study data and tools available on GitHub: https://github.com/Digital-Security-Lab

Future work:

- Follow-up studies with more online services, e.g. lab studies (currently done in a Master's thesis project)
- Derive concepts for service providers to improve security and accessibility
- Consider risk-based authentication in AAG models

ICISSP 2024

Rome, Italy | 26-28 February 2024

Thank you! Any questions?

Contact

Andre Büttner University of Oslo

Email: andrbut@ifi.uio.no

Web: https://www.mn.uio.no/ifi/english/people/aca/andrbut/index.html

Also on in 🔷 🔞

References

- [1] Taneski, Viktor, Marjan Heričko, and Boštjan Brumen. "Systematic overview of password security problems." Acta Polytechnica Hungarica 16.3 (2019): 143-165. 2019.
- [2] Das, Sanchari, Bingxing Wang, and L. Jean Camp. "MFA is a Waste of Time! Understanding Negative Connotation Towards MFA Applications via User Generated Content." arXiv e-prints (2019): arXiv-1908. 2019.
- [3] Amft, Sabrina, et al. "We've Disabled MFA for You": An Evaluation of the Security and Usability of Multi-Factor Authentication Recovery Deployments." *Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security*. 2023.
- [4] Hammann, Sven, et al. "User account access graphs." Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019.
- [5] Pöhn, Daniela, et al. "A framework for analyzing authentication risks in account networks." Computers & Security 135 (2023): 103515. 2023.
- [6] Grassi, et al. "Digital Identity Guidelines: Authentication and Lifecycle Management". https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf. 2020.
- [7] European Comission. "eIDAS Levels of Assurance". https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eIDAS+Levels+of+Assurance. 2023.
- [8] Petsas, Thanasis, et al. "Two-factor authentication: is the world ready? Quantifying 2FA adoption." *Proceedings of the eighth European workshop on system security*. 2015.
- [9] Milka, Grzergor. "Anatomy of account takeover." Enigma 2018 (Enigma 2018). 2018.
- [10] Risher, M. "A simpler and safer future without passwords". https://blog.google/technology/safety-security/a-simpler-and-saferfuture-without-passwords/. 2021.