

Is it Really You Who Forgot the Password? When Account Recovery Meets Risk-Based Authentication

Andre Büttner*, Andreas Thue Pedersen*, Stephan Wiefling, Nils Gruschka*, and Luigi Lo Iacono†

* University of Oslo (Norway)

† H-BRS University of Applied Sciences (Germany)

2nd November 2023

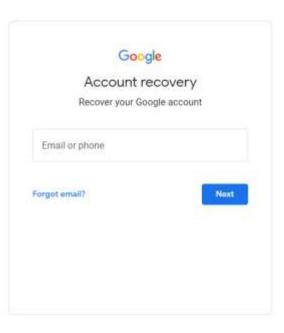
Motivation – Authentication

- Online accounts are usually protected by passwords^[1]
 - Susceptible to account takeover attacks
- Multi-factor authentication (MFA) as countermeasure
 - Improves security
 - Usability issues
- Risk-based authentication (RBA)^[2,3]
 - Risk assessment based on client features,
 e.g., (IP-)location, user agent, login times
 - Security ←→ Usability

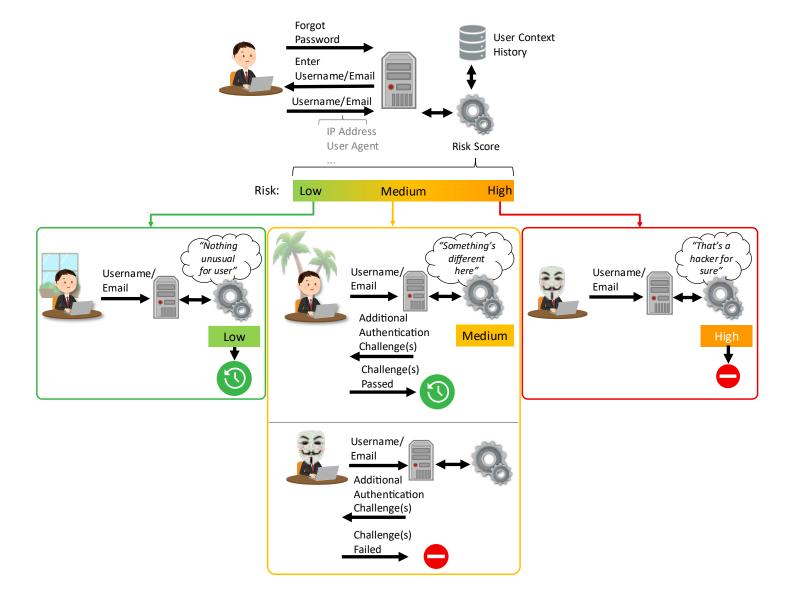
^[1] Quermann, Nils, Marian Harbach, and Markus Dürmuth. "The state of user authentication in the wild." WAY 18 (2018).

^[2] Freeman, David, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio Giacinto. "Who Are You? A Statistical Approach to Measuring User Authenticity." In NDSS, vol. 16, pp. 21-24. 2016.

^[3] Wiefling, Stephan, Luigi Lo Iacono, and Markus Dürmuth. "Is this really you? An empirical study on risk-based authentication applied in the wild." *ICT Systems Security and Privacy Protection: 34th IFIP TC 11 International Conference, Proceedings 34.* Springer International Publishing, 2019.


Motivation – Account Recovery

Account Recovery:


- Should meet the same security requirements as main authentication
- Can also benefit from risk-based decision making
 - Risk of account lockout ← → Exploitation of recovery

Risk-Based Account Recovery (RBAR):

- → A dynamic account recovery process on online services
- Uses similar features as RBA to detect suspicious users
- Different levels of difficulty to perform account recovery based on the risk
- Can lead to complete denial of account recovery for a highly suspicious client

RBAR

UNIVERSITY OF OSLO

Research Questions

?

- RQ1: Do RBA-instrumented online services also use RBAR mechanisms?
- RQ2: What RBAR challenges are used in practice?
- RQ3: Are different RBAR challenges required when setting up MFA?

Methodology

- 1. Exploratory experiment on Google
 - Confirm use of RBAR on Google^[1]
 - Compare different account setups
- 2. Follow-up experiment on four other online services
 - Testing the use of RBAR on the following services*
 - Amazon (<u>amazon.com</u>)
 - GOG (gog.com)
 - Dropbox (<u>dropbox.com</u>)
 - LinkedIn (linkedin.com)

^{*} These services have previously been confirmed to use RBA[2]

^[1] Bonneau, Joseph, Elie Bursztein, Ilan Caron, Rob Jackson, and Mike Williamson. "Secrets, lies, and account recovery: Lessons from the use of personal knowledge questions at google." In *Proceedings of the 24th international conference on world wide web*. 2015.

^[2] Wiefling, Stephan, Luigi Lo Iacono, and Markus Dürmuth. "Is this really you? An empirical study on risk-based authentication applied in the wild." ICT Systems Security and Privacy Protection: 34th IFIP TC 11 International Conference, Proceedings 34. Springer International Publishing, 2019.

Experiment 1

Preparation:

Four Google accounts were initially created with a certain time difference

Experimental procedure:

- Testing of account recovery with all possible single-factor and eight different MFA account setups
- Test variables
 - Known/unknown browser → using a private browser window
 - IP address → using a VPN

Experiment 1 – Results

Example tests on Google without MFA enabled:

Recovery factor	Phone signed in	Known browser	Known IP	Recovery procedure
None	0	•	•	Recovery not possible
None	•	•	•	Google prompt
None	•	0	0	Enter old password Google prompt (two steps)
Email	0	•	•	Verify account email
Email	0	0	•	Enter old password Verify account email

Example tests on Google with MFA phone enabled:

Recovery factor	Known browser	Known IP	Recovery procedure
None	•	•/0	 Verify MFA phone Verify account email Verify new email → Reset email after 48h
None	0	•	 Verify MFA phone Verify account email → Recovery not possible
None	0	0	 Enter MFA phone number Verify MFA phone Verify account email → Recovery not possible

• = Feature present, ○ = Feature not present, XXX = Step omitted

Experiment 2

Preparation:

- Four new accounts and at least one "old" account per online service
- Account training:
 - Sign into each service more than 20 times before the account recovery experiments
 - Use the same browser consistently for each account

Experimental procedure:

- Sign in once with a suspicious and once with a normal user context
 - Normal user: Login from same browser as during training
 - Suspicious user: Login from Tor browser

Experiment 2 – Identifying RBAR Usage

Online Service	Account	User Context		
		Normal	Suspicious	
Amazon	A1, A2, A4, A6*	EC	EC	
	A3, A1 [†]	CA→EC	CA→EC	
	A5*	EC	<u>CA</u> →EC	•
Dropbox	D1-D4, D5*	EL	EL	Different behavior!
GOG	G1-G4, G5*	CA→EL	CA→EL	
LinkedIn	L1-L4, L5*	EC	<u>CA</u> →EC	

EC = Email (Code), EL = Email (Link), CA = CAPTCHA, * = Old account, † = Experiment repeated, XXX = Additional step

Experiment 2 – Further Testing

LinkedIn:

- MFA methods were always required for both suspicious and normal user
- We conclude that CAPTCHA is the only RBAR method used
- The number of CAPTCHA iterations seemed to vary depending on the IP location of the Tor exit node

Amazon:

- No further tests as we could not reproduce RBAR behavior consistently
- We conclude that CAPTCHA is possibly used in connection with a risk assessment

RBAR Maturity Model

Maturity level

RBAR challenge	Identified on	Possible attacks
Pre-configured MFA	Google	Physical attack, malware
Background knowledge	Google	OSINT, leaked passwords, phishing
CAPTCHA	LinkedIn, Amazon	Manual recovery, CAPTCHA bypass algorithm
None	Dropbox, GOG	n/a

Conclusion

- Account recovery is a relevant entry point for account takeover attacks
- There are online services that use RBAR to a different degree
 - Google uses several different methods
 - Amazon and LinkedIn only requested a CAPTCHA
 - Dropbox and GOG did not differ between suspicious and benign users
- The proposed maturity model can be used:
 - To evaluate RBAR implementations
 - As a guideline for implementing RBAR
- Future work:
 - Extending the RBAR model
 - Detailed analysis of RBAR client features
 - Comparison of RBA and RBAR

Thank you! Any questions?

Contact

Andre Büttner University of Oslo

Email: andrbut@ifi.uio.no

Web: https://www.mn.uio.no/ifi/english/people/aca/andrbut/index.html

Also at: in 🔷 🔞

