

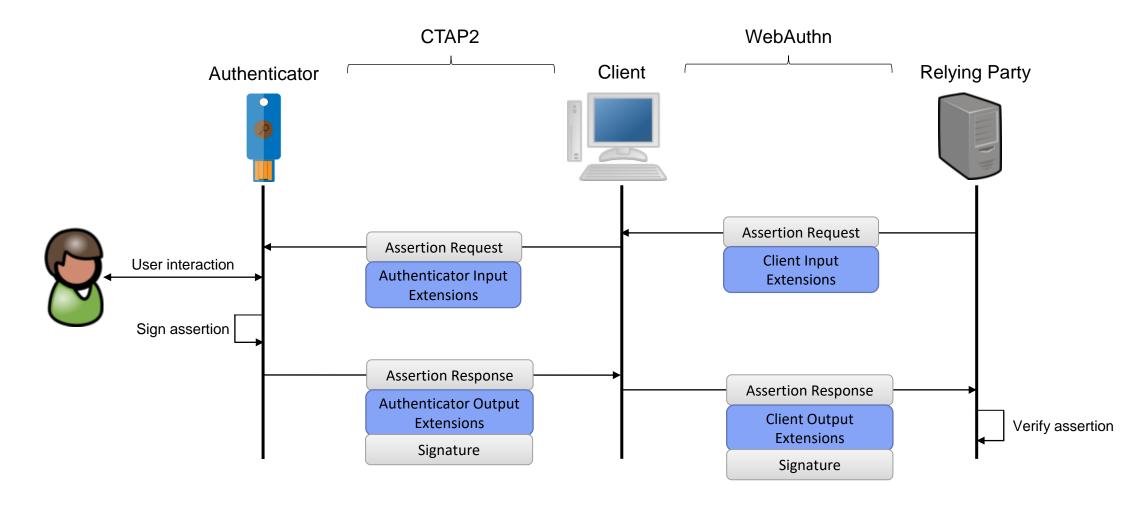
Protecting FIDO Extensions against Man-in-the-Middle Attacks

Andre Büttner and Nils Gruschka
University of Oslo

30th September 2022

FIDO Authentication

- Used for MFA or passwordless authentication
- Roaming / platform authenticators
- Based on public-key cryptography
- Phishing resistant
- FIDO2 Standards
 - W3C WebAuthn¹
 - Client-to-Authenticator Protocol 2 (CTAP2)²



^{1. &}lt;a href="https://www.w3.org/TR/webauthn">https://www.w3.org/TR/webauthn

^{2. &}lt;a href="https://fidoalliance.org/specs/fido-v2.1-rd-20210309/">https://fidoalliance.org/specs/fido-v2.1-rd-20210309/

FIDO Authentication

FIDO Authentication

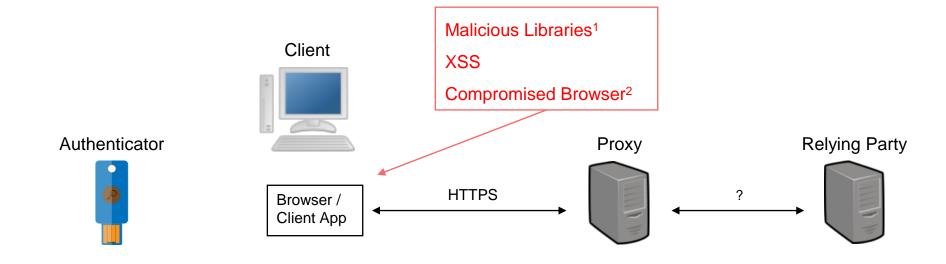
Extensions

- Transactions:
 - Transaction Confirmation¹ (deprecated)
 - Secure Payment Confirmation (SPC)²
- Other examples³:
 - HMAC Secret
 - Large blob storage

- 1. https://media.fidoalliance.org/wp-content/uploads/2020/08/FIDO-Alliance-Transaction-Confirmation-White-Paper-08-18-DM.pdf
- 2. https://www.w3.org/TR/secure-payment-confirmation/
- 3. https://www.w3.org/TR/webauthn

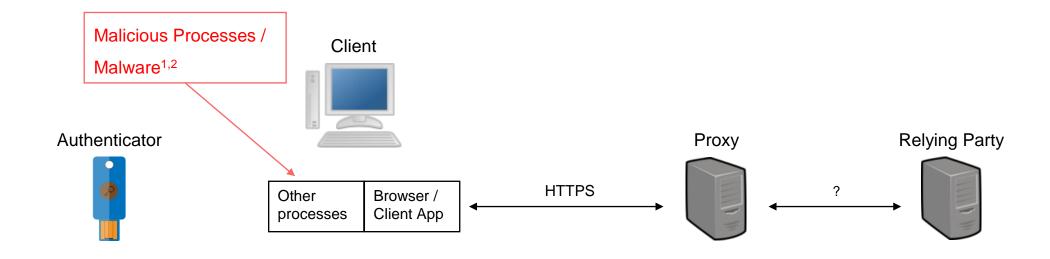
Attacker Model Semantic Gap Attacks¹ - Request Smuggling² - Web Cache Deception³ - ... **Relying Party** Authenticator Client Proxy **HTTPS**

UNIVERSITY 2. Linhart, C., et al. "Http request smuggling" (2005).


OF OSLO

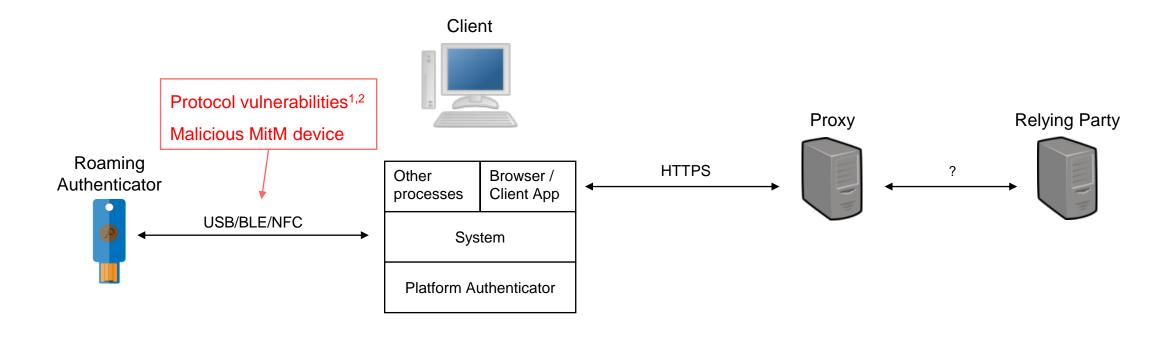
3. Gil, O. "Web cache deception attack " Black Hot Liv

3. Gil, O. "Web cache deception attack." Black Hat USA 2017 (2017).


Encrypted?

^{1.} Büttner, A, et al. "Less is Often More: Header Whitelisting as Semantic Gap Mitigation in HTTP-Based Software Systems." IFIP International Conference on ICT Systems Security and Privacy Protection. Springer, Cham, 2021.

^{1.} Arshad, S, et al. "Include me out: In-browser detection of malicious third-party content inclusions." International Conference on Financial Cryptography and Data Security. Springer, Berlin, Heidelberg, 2016.


^{2.} Dougan and Curran. "Man in the browser attacks." International Journal of Ambient Computing and Intelligence (IJACI) 4.1 (2012): 29-39.

Zhang, Y., et al. "Secure display for FIDO transaction confirmation." Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. 2018.

^{1.} Bui, T., et al. "Man-in-the-Machine: Exploiting {Ill-Secured} Communication Inside the Computer." 27th USENIX security symposium (USENIX Security 18). 2018.

UNIVERSITY ^{2.} OF OSLO

^{1.} Sun, D., *et al.* "Man-in-the-middle attacks on Secure Simple Pairing in Bluetooth standard V5. 0 and its countermeasure." Personal and Ubiquitous Computing 22.1 (2018): 55-67.

UNIVERSITY 2. Lahmadi, *et al.* "MitM attack detection in BLE networks using reconstruction and classification machine learning techniques." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2020.

Protocol Design

Security properties

- Confidentiality
- Authenticity
- Integrity

Challenges

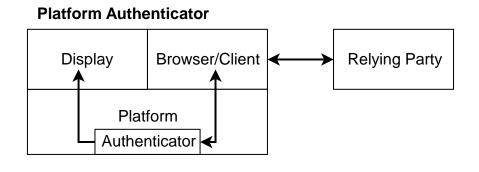
- Key exchange
- Encoding
- Displaying user information
- Low-resource devices
- FIDO2 standard compliance

Protocol Design

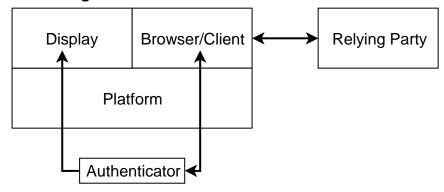
Authenticated encryption

- E.g. AES-GCM
- Key wrapping for multiple authenticators

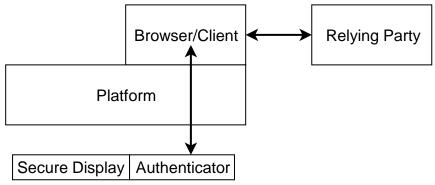
Key exchange


- Diffie-Helman Key Exchange during registration
- Require attestation

Data format


- CBOR Object Signing and Encryption (COSE)¹
 - Binary format
 - CBOR used in FIDO2
 - Standardized encryption, signature and message authentication algorithms and data structures

Protocol Design


Displaying user information

Roaming Authenticator

Roaming Authenticator with Display

Security Evaluation

Methodology

- ProVerif¹
- Creating models of the protocol
 - Registration
 - Authentication

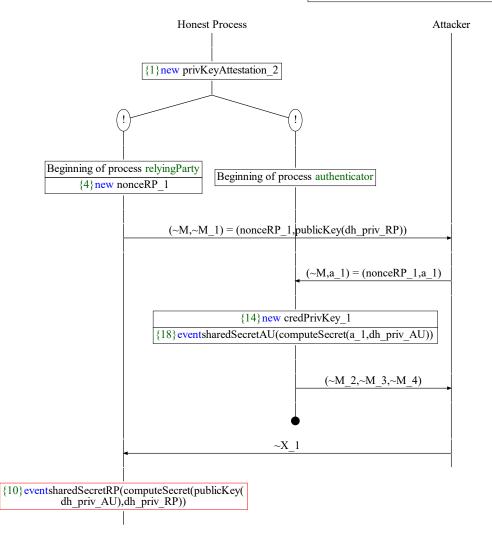
^{1.} Blanchet, B. "Modeling and verifying security protocols with the applied pi calculus and ProVerif." Foundations and Trends® in Privacy and Security 1.1-2 (2016): 1-135.

Security Evaluation – Registration

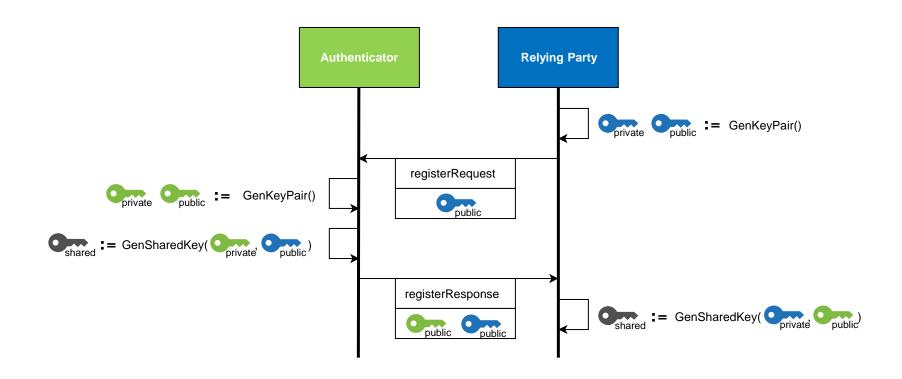
A trace has been found.

Γ	Abbreviations
	\sim M_2 = vk(credPrivKey_1)
	\sim M_3 = publicKey(dh_priv_AU)
Г	$_{\circ}M$ $A = \text{sign}((\text{nonce} PP + 1))/(\text{cred} PrivKey + 1)$ nublicKey(

~M_4 = sign((nonceRP_1,vk(credPrivKey_1),publicKey(dh_priv_AU)),privKeyAttestation_2)


~X_1 = (a_3,~M_2,~M_3,~M_4) = (a_3,vk(credPrivKey_1), publicKey(dh_priv_AU),sign((nonceRP_1,vk(credPrivKey_1), publicKey(dh_priv_AU)),privKeyAttestation_2))

Security properties tested

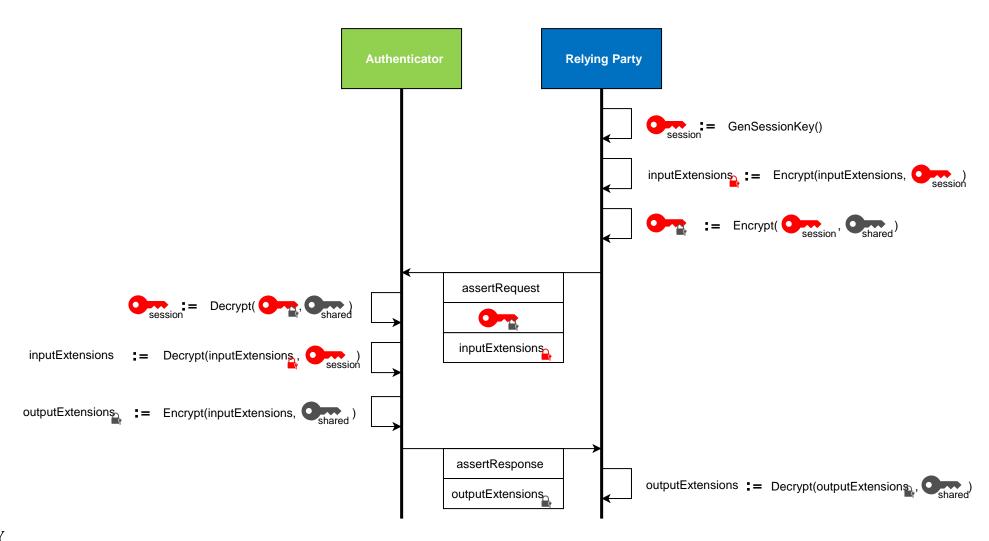

- Secrecy of the shared secret
- Authenticity of the shared secret

Results

- First version → Attack discovered X
- Second version → No attacks

Protocol Design – Registration

Security Evaluation – Authentication


Security properties tested

- Secrecy of the input and output extensions
- Authenticity of input and output extensions

Results

No attacks discovered

Protocol Design – Authentication

Discussion

Security

- FIDO extensions require further security measures
- Key exchange only secure with proper attestation (otherwise trust-on-first-use)
- Depends on cryptographic algorithms used

Implementation

- Relatively complex protocol
- Compliant with FIDO2 specifications
- Easy to implement using the proof-of-concept implementation¹

Discussion

Usability

- Important especially in the case of FIDO authentication
- Protocol is unnoticed by the user
- Delay neglectable
 - Measurements on Raspberry Pi Pico
 - o Registration: 250 ms
 - Assertion: 5 ms

Conclusion

- No application level encryption for FIDO extensions
 - → Vulnerable to MitM attacks
- Not many extensions used yet
 - → But relevant extensions like SPC are about to appear soon
- > The proposed protocol can effectively prevent attacks
 - → Security of the protocol formally verified

Additional Material

- COSE C-library <u>https://github.com/abuettner/cose-lib</u>
- Proof-of-concept implementation
 https://github.com/Digital-Security-Lab/protecting-fido-extensions-poc
- Formal evaluation <u>https://github.com/Digital-Security-Lab/protecting-fido-extensions-proverif</u>

Thank you!

Contact

Andre Büttner

University of Oslo

Email: andrbut@ifi.uio.no

https://www.mn.uio.no/ifi/english/people/aca/andrbut

