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Motivation

● High complexity of the web due to intermediaries
− E.g. caches, web application firewalls (WAFs) and load balancers

− Every entity may have its own HTTP implementation/library
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● Attacks
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Attack Embodiment

Response Splitting [Klein, 2004] URL

Request Smuggling [Linhart et al., 2005], [Kettle, 2019] Header

Host-of-Trouble (HoT) [Chen et al., 2016] Header

Cache-Poisoned Denial of Service (CPDoS) [Nguyen et al., 2019] Header

Hop-by-Hop [Davison, 2019] Header

Web Cache Deception [Gil, 2017], [Mirheidari et al., 2020] URL



Agenda

➢ Semantic Gaps in HTTP Message Processing

➢ Header Whitelisting

➢ Evaluation

➢ Discussion

➢ Conclusion
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Semantic Gaps in HTTP Message Processing

● Definition:
Inconsistent processing of HTTP messages inside a pipeline between the actual application logic and the 
intermediaries.

● Root causes:
− Ambiguities within the HTTP standard

▪ E.g.: duplicate header fields, no header size limit, non-standardized header fields

− Improper implementations

▪ E.g.: incorrect parsing of HTTP messages

− Different HTTP versions used 

▪ HTTP/1.1: RFC 2616, RFC 7230

▪ HTTP/1.1, HTTP/2, HTTP/3
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● Mitigation
− Proposed countermeasures usually address only one of these attacks

− WAFs have their own drawbacks and do also not prevent all attacks

− A more holistic view is required to reduce the attack surface (cf. [Mirheidari et al., 2020])

● Our solution
− Header Whitelisting (HWL) as an effective measure to mitigate the Semantic Gap
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Header Whitelisting

● Concept
− Reducing the HTTP request header to the minimum required header fields

→ Remove header fields that are not whitelisted

− Apply approach to each component separately

→ Append header fields back to the request before forwarding to the next component

− Enforce strictly standard compliant header parsing

→ Reject requests that include invalid syntax / meta characters
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● Example 1: CPDoS
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Cache

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

HTTP/1.1 404 Not FoundHTTP/1.1 404 Not Found

Cache

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 404 Not Found



● Example 1: CPDoS with HWL
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Cache

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

HTTP/1.1 200 OKHTTP/1.1 200 OK

Cache

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK

HWL

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK



● Example 2: Request Smuggling
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WAF

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

HTTP/1.1 200 OKHTTP/1.1 200 OK

POST /index.html HTTP/1.1
Host: example.com
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

WAF

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK
Content-Length: 14

Protected data

HTTP/1.1 200 OK
Content-Length: 14

Protected data

GET /index.html HTTP/1.1
Host: example.com GET /protected.html HTTP/1.1

Foo: GET /index.html HTTP/1.1
Host: example.com

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

0



● Example 2: Request Smuggling with HWL
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WAF

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

HTTP/1.1 200 OKHTTP/1.1 200 OK

POST /index.html HTTP/1.1
Host: example.com
Content Length: 40
Transfer-Encoding: chunked

0

WAF

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 403 Forbidden

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

0
HWL

HWL

GET /protected.html HTTP/1.1
Foo: GET /index.html HTTP/1.1
Host: example.com



● Architecture

− Incoming module

▪ Sanitize HTTP request from non-whitelisted header fields

− Session module

▪ Assign ID to HTTP requests and store corresponding non-whitelisted header fields

− Outgoing module

▪ Attach non-whitelisted header fields back to request
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● Prototype Implementation
− HWL Proxy

− Go Programming Language

− Implementation overview:
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− Header whitelist specified in JSON file
[

   {

      "key": "host"

   },

   {

      "key": "connection",

      "val": "(close|keep-alive)"

   },

   {

      "key": "content -length",

      "val": "\\d+"

}

]

− Source code: https://github.com/Digital-Security-Lab/hwl-proxy
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POST /index.html HTTP/1.1
Host: example.com
Connection: invalid
Content-Length: 5

abcdef

GET /index.html HTTP/1.1
Host: example.com
Connection: close
X-Forwarded-Host: evil.org

https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy


Evaluation

● Methodology
− Recreation of attacks in a lab environment

− Checking if attacks are prevented in case HWL is deployed

● Test Environment
− Three virtual server instances (Ubuntu 16.04 LTS)

▪ Client

▪ Intermediary

▪ Web Server

− Different proxies and test server applications to recreate attack scenarios
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● Test cases

ID Attack type Causing header Intermediary Web Server

TC1 Request Smuggling Content-Length ATS 7.1.2 NodeJS 4.1.2

TC2 Request Smuggling Transfer-Encoding + <SP> ATS 7.1.2 NodeJS 4.1.2

TC3 Request Smuggling X-Rewrite-Url NGINX 1.1.15 Symfony 3.4.0

TC4 CPDoS X-Original-Url Varnish 6.3.1 Symfony 3.4.0

TC5 CPDoS X-HTTP-Method-Override Varnish 6.3.1 Play 1.5.0

TC6 Hop-by-Hop Connection Varnish 3.0.0 NodeJS 4.1.2

TC7 HoT Host ATS 7.1.2 Rails 5.2.0

Intermediary Server TC1 TC2 TC3 TC4 TC5 TC6 TC7

○ ○ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

○ ● ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊕

● ○ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖

● ● ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

○ HWL disabled

● HWL enabled
⊕ attack prevented

⊖ attack succeeded

● Test results



Discussion

● Strengths
− All attacks could be prevented

− Compatible with HTTP components

− Zero-day exploits may be mitigated

● Limitations
− Request URL and HTTP responses not 

considered

− Evaluation only includes attacks, where an 
effect was expected

− CDNs were not tested

● Vulnerabilities
− Parsing errors may still occur 

− Vulnerable against DoS attacks

● Whitelist specification
− Incorrect configuration can cause 

malfunction

− Automatic whitelist creation 

− Default configuration should be provided

● Deployment
− Integration into existing HTTP libraries

− HWL as Software-as-a-Service
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Conclusion

● HWL is proposed as a measure to mitigate a broad range of attacks 

● We have implemented and evaluated a prototype

● The results show that attacks can be prevented effectively

● Future work:
− Evaluate and improve performance 

− Standardize approach

− Development of advanced features (e.g.: automatic whitelist, ACLs, etc.)
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Thank you!
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