
Less is Often More: Header Whitelisting as Semantic Gap 
Mitigation in HTTP-based Software Systems

Andre Büttner*, Hoai Viet Nguyen†, Nils Gruschka* and Luigi Lo Iacono†

* University of Oslo † Hochschule Bonn-Rhein-Sieg

23 June 2021



Motivation

● High complexity of the web due to intermediaries
− E.g. caches, web application firewalls (WAFs) and load balancers

− Every entity may have its own HTTP implementation/library

2

Client
Forward 

Proxy
CDN WAF

Load 

Balancer

Server 

Application

Server 

Application

Server 

Application

? ? ? ? ?



● Attacks

3

Attack Embodiment

Response Splitting [Klein, 2004] URL

Request Smuggling [Linhart et al., 2005], [Kettle, 2019] Header

Host-of-Trouble (HoT) [Chen et al., 2016] Header

Cache-Poisoned Denial of Service (CPDoS) [Nguyen et al., 2019] Header

Hop-by-Hop [Davison, 2019] Header

Web Cache Deception [Gil, 2017], [Mirheidari et al., 2020] URL



Agenda

➢ Semantic Gaps in HTTP Message Processing

➢ Header Whitelisting

➢ Evaluation

➢ Discussion

➢ Conclusion

4



Semantic Gaps in HTTP Message Processing

● Definition:
Inconsistent processing of HTTP messages inside a pipeline between the actual application logic and the 
intermediaries.

● Root causes:
− Ambiguities within the HTTP standard

▪ E.g.: duplicate header fields, no header size limit, non-standardized header fields

− Improper implementations

▪ E.g.: incorrect parsing of HTTP messages

− Different HTTP versions used 

▪ HTTP/1.1: RFC 2616, RFC 7230

▪ HTTP/1.1, HTTP/2, HTTP/3

5



● Mitigation
− Proposed countermeasures usually address only one of these attacks

− WAFs have their own drawbacks and do also not prevent all attacks

− A more holistic view is required to reduce the attack surface (cf. [Mirheidari et al., 2020])

● Our solution
− Header Whitelisting (HWL) as an effective measure to mitigate the Semantic Gap

6



Header Whitelisting

● Concept
− Reducing the HTTP request header to the minimum required header fields

→ Remove header fields that are not whitelisted

− Apply approach to each component separately

→ Append header fields back to the request before forwarding to the next component

− Enforce strictly standard compliant header parsing

→ Reject requests that include invalid syntax / meta characters

7



● Example 1: CPDoS

8

Cache

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

HTTP/1.1 404 Not FoundHTTP/1.1 404 Not Found

Cache

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 404 Not Found



● Example 1: CPDoS with HWL

9

Cache

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

HTTP/1.1 200 OKHTTP/1.1 200 OK

Cache

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK

HWL

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK



● Example 2: Request Smuggling

10

WAF

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

HTTP/1.1 200 OKHTTP/1.1 200 OK

POST /index.html HTTP/1.1
Host: example.com
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

WAF

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 200 OK
Content-Length: 14

Protected data

HTTP/1.1 200 OK
Content-Length: 14

Protected data

GET /index.html HTTP/1.1
Host: example.com GET /protected.html HTTP/1.1

Foo: GET /index.html HTTP/1.1
Host: example.com

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

0



● Example 2: Request Smuggling with HWL

11

WAF

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40
Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1
Foo: 

HTTP/1.1 200 OKHTTP/1.1 200 OK

POST /index.html HTTP/1.1
Host: example.com
Content Length: 40
Transfer-Encoding: chunked

0

WAF

GET /index.html HTTP/1.1
Host: example.com

HTTP/1.1 403 Forbidden

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

0
HWL

HWL

GET /protected.html HTTP/1.1
Foo: GET /index.html HTTP/1.1
Host: example.com



● Architecture

− Incoming module

▪ Sanitize HTTP request from non-whitelisted header fields

− Session module

▪ Assign ID to HTTP requests and store corresponding non-whitelisted header fields

− Outgoing module

▪ Attach non-whitelisted header fields back to request

12



● Prototype Implementation
− HWL Proxy

− Go Programming Language

− Implementation overview:

13



− Header whitelist specified in JSON file
[

   {

      "key": "host"

   },

   {

      "key": "connection",

      "val": "(close|keep-alive)"

   },

   {

      "key": "content -length",

      "val": "\\d+"

}

]

− Source code: https://github.com/Digital-Security-Lab/hwl-proxy

14

POST /index.html HTTP/1.1
Host: example.com
Connection: invalid
Content-Length: 5

abcdef

GET /index.html HTTP/1.1
Host: example.com
Connection: close
X-Forwarded-Host: evil.org

https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy


Evaluation

● Methodology
− Recreation of attacks in a lab environment

− Checking if attacks are prevented in case HWL is deployed

● Test Environment
− Three virtual server instances (Ubuntu 16.04 LTS)

▪ Client

▪ Intermediary

▪ Web Server

− Different proxies and test server applications to recreate attack scenarios

15



16

● Test cases

ID Attack type Causing header Intermediary Web Server

TC1 Request Smuggling Content-Length ATS 7.1.2 NodeJS 4.1.2

TC2 Request Smuggling Transfer-Encoding + <SP> ATS 7.1.2 NodeJS 4.1.2

TC3 Request Smuggling X-Rewrite-Url NGINX 1.1.15 Symfony 3.4.0

TC4 CPDoS X-Original-Url Varnish 6.3.1 Symfony 3.4.0

TC5 CPDoS X-HTTP-Method-Override Varnish 6.3.1 Play 1.5.0

TC6 Hop-by-Hop Connection Varnish 3.0.0 NodeJS 4.1.2

TC7 HoT Host ATS 7.1.2 Rails 5.2.0

Intermediary Server TC1 TC2 TC3 TC4 TC5 TC6 TC7

○ ○ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

○ ● ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊕

● ○ ⊕ ⊖ ⊖ ⊖ ⊖ ⊕ ⊖

● ● ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

○ HWL disabled

● HWL enabled
⊕ attack prevented

⊖ attack succeeded

● Test results



Discussion

● Strengths
− All attacks could be prevented

− Compatible with HTTP components

− Zero-day exploits may be mitigated

● Limitations
− Request URL and HTTP responses not 

considered

− Evaluation only includes attacks, where an 
effect was expected

− CDNs were not tested

● Vulnerabilities
− Parsing errors may still occur 

− Vulnerable against DoS attacks

● Whitelist specification
− Incorrect configuration can cause 

malfunction

− Automatic whitelist creation 

− Default configuration should be provided

● Deployment
− Integration into existing HTTP libraries

− HWL as Software-as-a-Service

17



Conclusion

● HWL is proposed as a measure to mitigate a broad range of attacks 

● We have implemented and evaluated a prototype

● The results show that attacks can be prevented effectively

● Future work:
− Evaluate and improve performance 

− Standardize approach

− Development of advanced features (e.g.: automatic whitelist, ACLs, etc.)

18



References

▪ Klein, Amit. "Divide and conquer." HTTP Response Splitting, Web Cache Poisoning Attacks and Related Topics, 
Sanctum whitepaper (2004).

▪ Linhart, C., Klein, A., Heled, R., Steve, O.: Http request smuggling (2005). https://www.cgisecurity.com/lib/HTTP-
Request-Smuggling.pdf

▪ Kettle, J.: Http desync attacks: Request smuggling reborn (2019). https://portswigger.net/research/http-desync-
attacks-request-smuggling-reborn

▪ Chen, J., Jiang, J., Duan, H., Weaver, N., Wan, T., Paxson, V.: Host of troubles: multiple host ambiguities in http 
implementations. In: 23th ACM SIGSAC Conference on Computer and Communications Security (CCS) (2016)

▪ Nguyen, H.V., Lo Iacono, L., Federrath, H.: Your cache has fallen: cache-poisoned denial-of-service attack. In: 26th 
ACM Conference on Computer and Communications Security (CCS) (2019)

▪ Davison, N.: Abusing http hop-by-hop request headers (2019). https://nathandavison.com/blog/abusing-http-hop-
by-hop-request-headers

▪ Gil, O.: WEB CACHE DECEPTION ATTACK. In: Blackhat USA (2017). https://blogs.akamai.com/2017/03/on-web-
cache-deception-attacks.html

▪ Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson, W.: Cached and confused: web cache
deception in the wild. In: 29th USENIX Security Symposium (USENIX Security) (2020)

19

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html


Thank you!

20


	Slide 1: Less is Often More: Header Whitelisting as Semantic Gap Mitigation in HTTP-based Software Systems
	Slide 2: Motivation
	Slide 3
	Slide 4: Agenda
	Slide 5: Semantic Gaps in HTTP Message Processing
	Slide 6
	Slide 7: Header Whitelisting
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Evaluation
	Slide 16
	Slide 17: Discussion
	Slide 18: Conclusion
	Slide 19: References
	Slide 20

