4 ’«
v . o g 2 o ‘ FTo .
-~ XA Yz g N . ol
,j-':t«s* N " 15 - (,ﬁ
— LA = s S E j | b -
==) N 3 o : d
3 = & ! 1B
3 : o e g i y
. . =5 - 3= = jA\ \ -:.\‘ '\.'.‘Vf /‘
B R ARl i

UiO ¢ Department of Informatics
University of Oslo

Less is Often More: Header Whitelisting as Semantic Gap
Mitigation in HTTP-based Software Systems

Andre Blttner”, Hoai Viet Nguyen', Nils Gruschka™ and Luigi Lo lacono’

* University of Oslo 1 Hochschule Bonn-Rhein-Sieg

2 1 23 June 2021
QS WAY

Motivation

e High complexity of the web due to intermediaries
— E.g. caches, web application firewalls (WAFs) and load balancers
— Every entity may have its own HTTP implementation/library

Server
Application
P

: ? Forward Load A? R Server
Client ~ > .

Proxy Balancer . Application
Server
Application

e Attacks

Attack Embodiment
Response Splitting [Klein, 2004] URL

Request Smuggling [Linhart et al., 2005], [Kettle, 2019] Header
Host-of-Trouble (HOT) [chen et al., 2016] Header
Cache-Poisoned Denial of Service (CPD0S) [Nguyen et al., 2019] Header
Hop-by-Hop [pavison, 2019] Header

Web Cache Deception [ail, 2017], [Mirheidari et al., 2020] URL

Agenda

» Semantic Gaps in HTTP Message Processing
» Header Whitelisting

» Evaluation

» Discussion

» Conclusion

Semantic Gaps in HTTP Message Processing

e Definition:
Inconsistent processing of HTTP messages inside a pipeline between the actual application logic and the

intermediaries.

® Root causes:

— Ambiguities within the HTTP standard
= E.g.: duplicate header fields, no header size limit, non-standardized header fields

— Improper implementations

= E.g.:incorrect parsing of HTTP messages
— Different HTTP versions used

= HTTP/1.1: RFC 2616, RFC 7230

= HTTP/1.1, HTTP/2, HTTP/3

e Mitigation
— Proposed countermeasures usually address only one of these attacks
— WAFs have their own drawbacks and do also not prevent all attacks
— A more holistic view is required to reduce the attack surface (cf. [Mirheidari et al., 2020])

e Qur solution

— Header Whitelisting (HWL) as an effective measure to mitigate the Semantic Gap

Header Whitelisting

e Concept
— Reducing the HTTP request header to the minimum required header fields
- Remove header fields that are not whitelisted
— Apply approach to each component separately
- Append header fields back to the request before forwarding to the next component
— Enforce strictly standard compliant header parsing
- Reject requests that include invalid syntax / meta characters

e Example 1: CPDoS

GET /index.html HTTP/1.1 GET /index.html HTTP/1.1
Host: example.com Host: example.com
X-Rewrite-URL: /attack.html X-Rewrite-URL: /attack.html

A 4

A

D S
< <
HTTP/1.1 404 Not Found HTTP/1.1 404 Not Found

GET /index.html HTTP/1.1
Host: example.com

A 4

Cache

A

HTTP/1.1 404 Not Found

e Example 1: CPDoS with HWL

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

GET /index.html HTTP/1.1
Host: example.com
X-Rewrite-URL: /attack.html

A 4

GET /index.html HTTP/1.1
Host: example.com

Cache

- ~ HTTP/1.1 200 OK

GET /index.html HTTP/1.1
Host: example.com

A

—
HTTP/1.1 200 OK

A 4

Cache

A

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Example 2: Request Smuggli

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40
Transfer-Encoding: chunked

ng

0
GET /protected.html HTTP/1.1
\|l|IIlr Foo:
Y -
< -
HTTP/1.1 200 OK
GET /index.html HTTP/1.1
' Host: example.com
Y il
< -
HTTP/1.1 200 OK

Content-Length: 14

Protected data

POST /index.html HTTP/1.1

Host: example.com
Content Length: 40

Transfer-Encoding: chunked

0

GET /protected.html HTTP/1.1

Foo:

A

HTTP/1.1 200 OK

GET /index.html HTTP/1.1

Host: example.com

A

HTTP/1.1 200 OK
Content-Length: 14

Protected data

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

4]

GET /protected.html HTTP/1.1
Foo: GET /index.html HTTP/1.1
Host: example.com

e Example 2: Request Smuggling with HWL

POST /index.html HTTP/1.1
Host: example.com
Connection: keep-alive
Content Length: 40

Transfer-Encoding: chunked POST /index.html HTTP/1.1

Host: example.com
WAF Content Length: 40

0
Transfer-Encoding: chunked

GET /protected.html HTTP/1.1 .
Foo:

0

HTTP/1.1 200 OK HTTP/1.1 200 OK

GET /protected.html HTTP/1.1
Foo: GET /index.html HTTP/1.1
Host: example.com

GET /index.html HTTP/1.1
Host: example.com

=
=

HTTP/1.1 403 Forbidden

POST /index.html HTTP/1.1
Host: example.com
Transfer-Encoding: chunked

4]

11

e Architecture

Whitelist for Whitelist for
Intermediary 2 Intermediary 3
HWL Prax},fl HWL Pruxyl
Session Session
Incoming | Outgoing » Incoming Outgoing

Whitelist for
Web Server

HWL Proxy l

A h

k ¥

~ -

A J J

Client <

F

Intermediary 1

Intermediary 2

Intermediary 3

— Incoming module

= Sanitize HTTP request from non-whitelisted header fields

— Session module

= Assign ID to HTTP requests and store corresponding non-whitelisted header fields

— Outgoing module

= Attach non-whitelisted header fields back to request

k.

SES510N

e ep e,

Incoming ; Outgoing

k

¥

Web Server

12

e Prototype Implementation
— HWL Proxy
— Go Programming Language

— Implementation overview:

Incoming

Intermediary

BE

Read Header I

2

Verify Request Header Syntax |

|Remove Non-Whitelisted Header Fields |<-

4 4

Outgoing

Read Header

v

Verify Request Header Syntax

-»{ Attach Non-Whitelisted Header Fields |

Forward Restored Request

l_

Session

13

— Header whitelist specified in JSON file

[
{
"key":
}s
{
"key":
"val":
}s
{
"key":
"val":
}
]

— Source code: https://github.com/Digital-Security-Lab/hwl-proxy

"host"

"connection",
"(close[keep-alive)"

"content -Llength",
l’\\d+ll

POST /index.html HTTP/1.1
Host: example.com

- fions i lid
Content-Length: 5

abcdef

GET /index.html HTTP/1.1
Host: example.com
Connection: close

X-Forwarded-Hosti+—evil-org

https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy
https://github.com/Digital-Security-Lab/hwl-proxy

Evaluation

e Methodology
— Recreation of attacks in a lab environment
— Checking if attacks are prevented in case HWL is deployed

® Test Environment

— Three virtual server instances (Ubuntu 16.04 LTS)
= Client
= |ntermediary

= Web Server

— Different proxies and test server applications to recreate attack scenarios

15

® Test cases

ID
TC1
TC2
TC3
TCA
TCS
TC6
TC7

Attack type
Request Smuggling
Request Smuggling
Request Smuggling

CPDoS
CPDoS
Hop-by-Hop
HoT

® Test results

Intermediary

O
O
®
®

Server

O

o
O
[

O HWL disabled
@ HWL enabled

Causing header
Content-Length
Transfer-Encoding + <SP>
X-Rewrite-Url
X-Original-Url
X-HTTP-Method-Override

Connection
Host
TC1 TC2 TC3
S) o o
S S

attack prevented
© attack succeeded

TC4

Intermediary
ATS 7.1.2
ATS 7.1.2

NGINX 1.1.15

Varnish 6.3.1

Varnish 6.3.1

Varnish 3.0.0
ATS 7.1.2

TCS

TC6

TC7

Web Server
NodelS 4.1.2
NodelS 4.1.2
Symfony 3.4.0
Symfony 3.4.0
Play 1.5.0

NodelS 4.1.2

Rails 5.2.0

16

Discussion

e Strengths
— All attacks could be prevented
— Compatible with HTTP components
— Zero-day exploits may be mitigated

e Limitations

— Request URL and HTTP responses not
considered

— Evaluation only includes attacks, where an
effect was expected

— CDNs were not tested

® Vulnerabilities

Parsing errors may still occur

— Vulnerable against DoS attacks

e Whitelist specification

Incorrect configuration can cause
malfunction

Automatic whitelist creation
Default configuration should be provided

e Deployment

Integration into existing HTTP libraries
HWL as Software-as-a-Service

17

Conclusion

HWL is proposed as a measure to mitigate a broad range of attacks
We have implemented and evaluated a prototype
The results show that attacks can be prevented effectively

Future work:
— Evaluate and improve performance
— Standardize approach
— Development of advanced features (e.g.: automatic whitelist, ACLs, etc.)

18

References

= Klein, Amit. "Divide and conquer.”" HTTP Response Splitting, Web Cache Poisoning Attacks and Related Topics,
Sanctum whitepaper (2004).

= Linhart, C., Klein, A., Heled, R., Steve, O.: Http request smuggling (2005). https://www.cgisecurity.com/lib/HTTP-
Request-Smuggling.pdf

= Kettle, J.: Http desync attacks: Request smuggling reborn (2019). https://portswigger.net/research/http-desync-
attacks-request-smuggling-reborn

= Chen,J, Jliang, J., Duan, H., Weaver, N., Wan, T., Paxson, V.: Host of troubles: multiple host ambiguities in http
implementations. In: 23th ACM SIGSAC Conference on Computer and Communications Security (CCS) (2016)

= Nguyen, H.V,, Lo lacono, L., Federrath, H.: Your cache has fallen: cache-poisoned denial-of-service attack. In: 26th
ACM Conference on Computer and Communications Security (CCS) (2019)

= Davison, N.: Abusing http hop-by-hop request headers (2019). https://nathandavison.com/blog/abusing-http-hop-
by-hop-request-headers

= Gil, O.: WEB CACHE DECEPTION ATTACK. In: Blackhat USA (2017). https://blogs.akamai.com/2017/03/on-web-
cache-deception-attacks.html

= Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson, W.: Cached and confused: web cache
deception in the wild. In: 29th USENIX Security Symposium (USENIX Security) (2020)

19

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://nathandavison.com/blog/abusing-http-hop-by-hop-request-headers
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html

Thank youl!

20

	Slide 1: Less is Often More: Header Whitelisting as Semantic Gap Mitigation in HTTP-based Software Systems
	Slide 2: Motivation
	Slide 3
	Slide 4: Agenda
	Slide 5: Semantic Gaps in HTTP Message Processing
	Slide 6
	Slide 7: Header Whitelisting
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Evaluation
	Slide 16
	Slide 17: Discussion
	Slide 18: Conclusion
	Slide 19: References
	Slide 20

