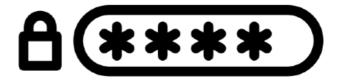


UiO Department of Informatics University of Oslo

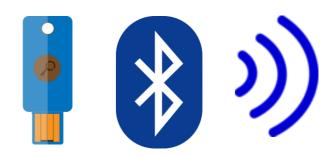
Enhancing FIDO Transaction Confirmation with Structured Data Formats


Andre Büttner and Nils Gruschka

University of Oslo

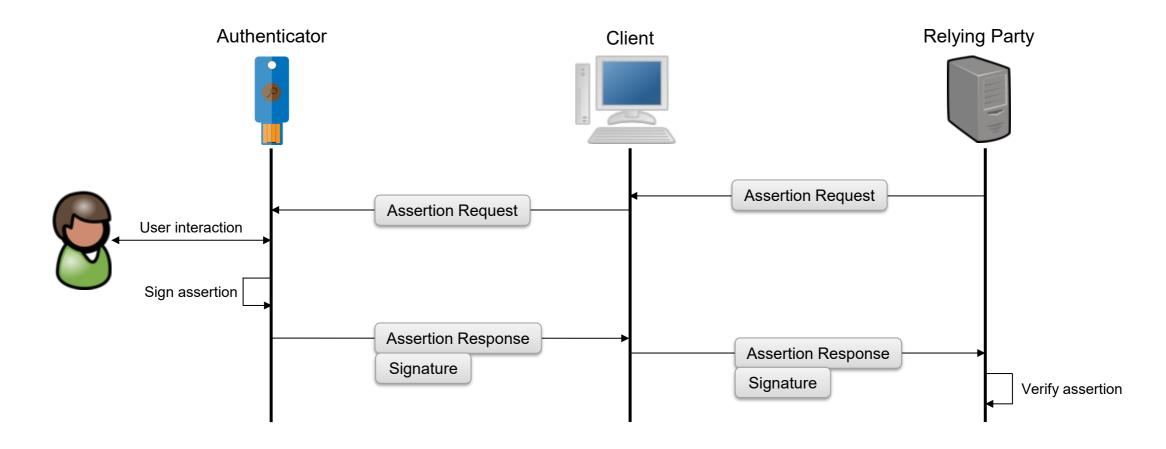
Password Authentication

- Something a user knows
- Hashed password stored on the server
- Vulnerable to phishing, brute-forcing, etc.
- Often requires additional measures like multi-factor authentication (2FA/MFA) and password managers

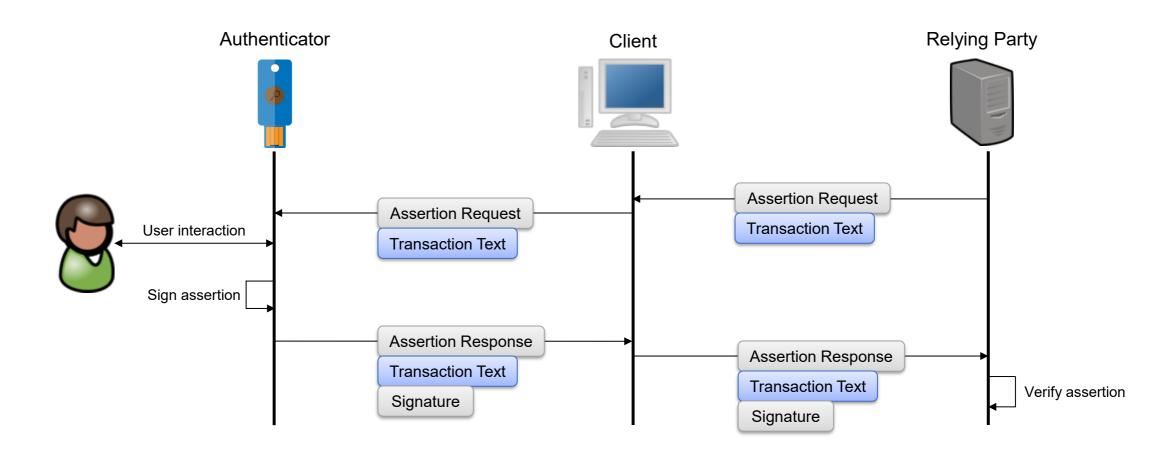


FIDO Authentication I

- Something a user has
- Additional factor or replacement for passwords
- Roaming/platform authenticators
- Based on public-key cryptography
- The secret never leaves the authenticator
- User presence check by e.g. a button press or biometrics



FIDO Authentication II


FIDO Transaction Confirmation I

- Proposed in a whitepaper [FIDO Alliance, 2020]
- Protocol extension to include information about a transaction
- Use cases like online banking/purchases or granting access to resources
- Transaction text

```
{
    ...
    extensions: {
       txAuthSimple: "Transfer 100.0 NOK to John Doe."
    }
}
```

Transaction image

FIDO Transaction Confirmation II

Risks of Transaction Confirmation

- Manipulation by MitM attackers [Zhang et al., 2018], [Xu et al., 2021]
 - E.g. malware or cross-site scripting (XSS)
- User may be tricked into confirming a malicious extension
- No easy way to put constraints to transactions that can be verified automatically
- Ambiguity of transaction text
- → Violation of What-You-See-Is-What-You-Sign (WYSIWYS) [Landrock and Pedersen, 1998]

Structured Data for Transactions I

- Self-describing & well-formedness
- Policies can be applied to transaction properties
- XML as common format for (semi-)structured data
 - XML Schema Definition (XSD) language
 - XML Signature and Encryption standards
- FIDO extensions based on
 - JavaScript Object Notation (JSON)
 - Concise Binary Object Representation (CBOR)

```
<?xml version = "1.0"?>
<contact>
     <name>John Doe</name>
     <email>john.doe@example.com</email>
</contact>
```

Structured Data for Transactions II

- CBOR
 - Binary data format
 - Particularly useful for low-resource devices such as authenticators
 - Concise Data Definition Language (CDDL)
 - CBOR Object Signing and Encryption (COSE)

• Example:

Transaction Text

"Consent to pay \$1000 to company X for purchasing product Y"

JSON

```
"type": "purchase",
    "value": 1000.0,
    "currency": "USD",
    "datetime": "2021-01-01 15:00",
    "customer": {"id": "123456", "name": "John Doe"},
    "retailer": {"id": "123456", "name": "company X"},
    "product": {"id": "123456", "name": "product Y"}
}
```

CBOR

A76474797065687075726 3686173656576616C7565 F963D06863757272656E6 379...

Discussion I

- Formats like XML, JSON or CBOR
 - Can help to avoid ambiguities
 - Can represent more complex types → Filtering of relevant user information
 - Are machine-readable → Applying policies to limit transaction values
- Features like the COSE protocol can prevent manipulation and eavesdropping of extensions
- Definition of schemas
 - By the authenticator → May be difficult on low-resource devices
 - By the client application → Mitigated security gain

Discussion II

- Disadvantages
 - Complexity
 - Increased size of data
 - Latency

Conclusion

- Transaction Confirmation as one of many examples for advanced FIDO use cases
- The proposed extension is too ambiguous and cannot provide WYSIWYS
- Structured formats can facilitate further security measures for FIDO transactions
 - Policies
 - Cryptographic functions

Outlook and Future Work

- Creating test beds for different attack scenarios
- Implementation of transactions using structured data for different FIDO authenticators
- Evaluating CDDL validation and COSE as possible protection measures
- Secure Payment Confirmation [McGruer and Solomakhin, 2021] as replacement for FIDO Transaction Confirmation

References

- FIDO Alliance, 'White Paper: FIDO Transaction Confirmation', Aug. 21, 2020. https://fidoalliance.org/white-paper-fido-transaction-confirmation/
- Y. Zhang, X. Wang, Z. Zhao, and H. Li, 'Secure Display for FIDO Transaction Confirmation', in *Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy*, New York, NY, USA, Mar. 2018, pp. 155–157. doi: 10.1145/3176258.3176946.
- P. Xu, R. Sun, W. Wang, T. Chen, Y. Zheng, and H. Jin, 'SDD: A trusted display of FIDO2 transaction confirmation without trusted execution environment', *Future Generation Computer Systems*, vol. 125, pp. 32–40, Dec. 2021, doi: 10.1016/j.future.2021.06.034.
- P. Landrock and T. Pedersen, 'WYSIWYS? What you see is what you sign?', *Information Security Technical Report*, vol. 3, no. 2, pp. 55–61, Jan. 1998, doi: 10.1016/S0167-4048(98)80005-8.
- Stephen McGruer and Rouslan Solomakhin. 'Secure Payment Confirmation', W3C Working Draft, Aug. 31, 2021.
 https://www.w3.org/TR/2021/WD-secure-payment-confirmation-20210831/

Thank you!